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A novel �nite point method for �ow simulation
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SUMMARY

A novel �nite point method is developed to simulate �ow problems. The mashes in the traditional
numerical methods are supplanted by the distribution of points in the calculation domain. A local
interpolation based on the properties of Taylor series expansion is used to construct an approximation
for unknown functions and their derivatives. An upwind-dominated scheme is proposed to e�ciently
handle the non-linear convection. Comparison with the �nite di�erence solutions for the two-dimensional
driven cavity �ow and the experimental results for �ow around a cylinder shows that the present method
is capable of satisfactorily predicting the �ow separation characteristic. The present algorithm is simple
and �exible for complex geometric boundary. The in�uence of the point distribution on computation
time and accuracy of results is included. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: �nite point method; Taylor series expansion; mesh-free techniques; computational �uid
dynamics; �ow separation

1. INTRODUCTION

With the development of modern high-speed computers, a lot of complex problems in compu-
tational �uid dynamics, such as the solution of three-dimensional �ow in engineering, can be
simulated using the traditional �nite element and �nite volume methods when an acceptable
mesh is provided. The generation of meshes, however, can spend far more time and cost than
the numerical solution itself in many cases of industrial computation. Therefore, the mesh
generation remains one of the big challenges for modelling complicated boundary conditions
and multiphase interfaces of arbitrary shape. In recent years, the mesh free method or the
�nite point method has attracted much attention in computational mechanics.
A lot of e�ort has been devoted to the development of the mesh-free schemes in compu-

tational mechanics. The earliest attempt to use a local interpolation scheme for an irregular
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mesh of nodal points in the �nite di�erence method (FDM) was made by Perrone and Kao
in 1975 [1] to solve a Poisson equation and a �at membrane problem. In their scheme, the
domain in the vicinity of a given central point is divided into eight 45◦ pies shaped segments
and the closest �nite di�erence point in each segment is selected. Taylor series expansions
about the central point and an averaging process on the four points in the diagonal segments
are used to construct an approximation for derivatives up to the second order. When applied
to square meshes, these general derivative expressions for arbitrary meshes reduce to the usual
�nite di�erence formulae. A local interpolation method, which is based on a Taylor expansion
of the unknown function combined with the minimization of errors, was proposed by Liszka
and Orkisz in 1980 [2; 3]. By the appropriate de�nition of weighting coe�cients, this method
may be viewed as an interpolation or approximation in the sense of minimum deviation from
given values.
An alternative method, smoothed particle hydrodynamics method, which uses no underlying

grid, was �rst introduced by Gingold and Mongghan in 1977 [4]. This method is now being
used for a wide variety of impact problems [5; 6]. More recently, an element-free Galerkin
method, which is applicable to elasticity and heat conduction problems, has been proposed by
Belytschko et al. [7] in 1994. In this method, moving least-squares interpolation is used to
construct the trial and test functions for the variational principle. Their study results showed
that the rate of convergence can exceed that of �nite elements signi�cantly and a high resolu-
tion of localized steep gradients can be achieved. Liu et al. [8; 9] have developed a di�erent
class of gridless multiple-scale methods based on reproducing kernel and wavelet analysis.
This technique termed Reproducing Kernel Particle method allows one to develop a new type
of shape functions using an integral window transform. The window function can be trans-
lated and dilated around the domain thus replacing the need to de�ne elements and providing
re�nement.
Presently, a penalty method for enforcing essential boundary conditions in element-free

Galerkin method is proposed by Liu and Yang [10]. They found that the system equation
produced using penalty method has the same size as that produced by conventional �nite
element method for boundary value problems of both homogeneous and inhomogeneous ma-
terial, and can be much smaller than the size of that produced using Lagrange multipliers in
the element-free Galerkin formulation. The method has also been applied for problems with
essential boundaries and material discontinuity. Some other types of mesh free techniques
have also been reported [10–12].
An excellent review, covering most aspects of this subject in great detail, has been written

by Onate et al. [13] and Duarte [14].
A thorough literature survey reveals, however, that there is relatively little scheme applied

to �ow problem, especially, for high Reynolds numbers �ow. The purpose of the present paper
is to develop a �nite point method (FPM) for �ow analysis. In the present scheme, mashes
are supplanted by the distribution of points in the calculation domain. The discretization of
the unknown function and its derivatives are de�ned only by the position of the points. The
unknown function at a point is approximated by an interpolation function, which is based
on the properties of Taylor expansions. This new scheme can provide great �exibility and
convenience in the implementation of boundary conditions and coding.
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2. FINITE POINT METHOD

2.1. Numerical procedure

Consider the equation
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f(x; y)= h(x; y); (x; y) ∈ � (2)

where D is the appropriate physics governing equation, f(x; y) is the unknown, g(x; y) is
sources acting over the domain �, and h(x; y) is the prescribed value of f(x; y) over the
domain’s boundary �. f(x; y) at the point P0(x0; y0) in the domain can be expressed in terms
of the values of f(x; y) at nearby points. For any su�ciently di�erentiable function f(x; y)
in a given domain the Taylor series expansion around a point P0(x0; y0) can be used
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Writing Equation (3) for the M points around the point P0(x0; y0), one can derive the linear
systems of equations of the form

AW=F (4)
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FT = [f1 − f0; f2 − f0; f3 − f0; : : : ; fM − f0]

If the matrix A is non-singular, then the solution of Equation (4) is

W=A−1F (5)
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By substituting (5) into (1), the relation of f0 with fj (i=1; 2; 3; : : : ; M) can be written
formally as

�(f1; f2; f3; : : : ; fM ) + f0	(�x1;�x2;�x3; : : : ;�xM ;�y1;�y2;�y3; : : : ;�yM )=g (6)

therefore,

f0=
�(f1; f2; f3; : : : ; fM )− g

	(�x1;�x2;�x3; : : : ;�xM ;�y1;�y2;�y3; : : : ;�yM )
(7)

For Dirichlet boundary condition (2), solution of Equation (1) in domain � can be obtained
using the SOR method. When Neumann boundary condition is speci�ed on the domain bound-
ary �,
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an equation, which is the same as Equation (7) in form, can be derived for fB subject to
Equation (8), i.e.

fB=
�′(f1; f2; f3; : : : ; fN )− h′

	′(�x1;�x2;�x3; : : : ;�xN ;�y1;�y2;�y3; : : : ;�yN )
(9)

where N is the number of points around the point PB(xB; yB) on the boundary �. The solution
of Equation (1) in domain � can be obtained by iterating Equations (7) and (8).

2.2. Six-point scheme

For two-dimensional �ow problem, �ve points at the least are selected to determine f0
because the Navier–Stokes equations are the second-order partial di�erential equations. As
reported by Liszka and Orkisz [2], the main di�culty in a successful application of the �nite
point approach is to avoid singular or an ill-conditioned matrix A so as to obtain acceptable
derivatives W . Therefore, it is important to select the points from the domain around a given
point in order to avoid the singular. On the other hand, as is well known, �uid �ow consists of
two mechanisms of di�usion and convection, which occur simultaneously. It is also important
to approximate properly the convection term in the Navier–Stokes equations in order to obtain
better solutions of �ow problems at high Reynolds numbers. In this paper, a 6-point scheme
is proposed. More speci�cally, the sub-domain around the central point P0(x0; y0) is divided
into eight equal regions, I–VIII (see Figure 1(a)). The point, which is the nearest from the
central point, is selected every two regions. Points 1–4 is selected from regions I, III, V and
VII. The 5th point is selected according to the �ow direction at the point P0(x0; y0), as shown
in Figures 1(a) and 1(b). For example, when u¿0 and v¿0 at the central point P0(x0; y0),
point 5 is selected from regions VI, when u60 and v60 at the central point P0(x0; y0), point
5 is selected from regions II. It should be noted that in the present scheme, it is essential to
�nd the inverse A−1 of a 6× 6 matrix A at every computing points. The more the number of
points, the more time it will take to compute the inverse of matrix. However, once the point
distribution is given, the A or A−1 can be determined, thus, before performing numerical
iteration, one will only calculate the inverse A−1 of matrix A once at every points.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1161–1178



NOVEL FINITE POINT METHOD FOR FLOW SIMULATION 1165

f0

f1

f2

f3

f4

x

f5
y

I

IIIII

IV

V
VI VII VIII

f0

f1

f2

f3

f4

f5

x

y

(a) (xi, yi)  ∈ Ω, u0 ≥ 0 and v0 ≥ 0 (b) (xi, yi)  ∈ Ω, u0 ≤ 0 and v0 > 0 

f0

f1

f2

f3

f4f5
  

f0

f1 f2f3

f4

f5
 

 
(c) Dirichlet BC.  (x4, y4), (x5, y5) ∈ Γ        (d) Neumann BC. (x0, y0), (x5, y5)  ∈ Γ   

P0 

P0 

P0 
P0 

Figure 1. Six-point scheme.

For Dirichlet boundary condition, the central point P0(x0; y0) always locates in domain �
because fb is known on the boundary �. Thus, the way of the selecting point is the same as
mentioned above near the boundary (see Figure 1(c)). When Neumann boundary condition
is speci�ed on the domain boundary �, on the account of accuracy consideration, parallel
points distribution is used. One layer lies on the boundary and another is in the domain. This
is because that this distribution is simple, and convenient to apply the 6-point scheme (see
Figure 1(d)).
In order to analyse the upwind property of the present numerical scheme, we will illustrate

them on a typical convection equation, written here as follows:

ufx + vfy=0 (10)

where u and v are the convection speed.
For convenience, assume that the point coincides with the node of a rectangular mesh, and

the velocity u and v are positive constants, respectively, as shown in Figure 2. When M=6,
Equation (5) can be written as

fx =
f1 − f3
2�x

(11)
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Figure 2. Rectangular mesh.

fy =
f2 − f4
2�y

(12)

fxy =
f5 + f0 − f3 − f4

�x�y
(13)
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f1 − 2f0 + f3

�x2
(14)

fyy =
f2 − 2f0 + f4
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Substituting (11) and (12) into (10) gives

u
2�x

(f1 − f3) +
v
2�y

(f2 − f4)=0 (16)

In order to get f0 the second-order equation can be derived from Equation (10) by di�eren-
tiating it with respect to x and y, respectively.

ufxx + vfxy=ufxy + vfyy=0 (17)

Similarly, by substituting (13), (14) and (15) into (17), the value of f0 can then been written
as

f0 =
[
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u
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(f1 + f3) +
v
�y2

(f2 + f4)
]/
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Setting �x=�y and taking into account (16), one obtains

f0=f5 +
u− v
u+ v

(f3 − f4) (19)
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Figure 3. The number of iterations required to satisfy the convergence
criterion for di�erent number of points.

It is clear that f0 is determined by f3, f4 and f5 at upwind position, and when u=v, f0=f5.
The present scheme not only avoids the singularity in the derivative coe�cient matrix A in
which rows or columns of the matrix are linearly connected by certain relations, but also forms
a structure of upwind points domination; hence, it greatly increase the stability of schemes.
Even though the function f(x; y) expressions for arbitrary meshes reduce to the usual �nite
di�erence formulae when applied to square meshes, the present scheme possesses both the
accuracy of the second-order central di�erence and characteristic of upwind domination.

2.3. E�ect of point distribution density

In order to discuss the in�uence of the point distribution density on time and accuracy of
computation, let us consider the Laplace’s equation

fxx + fyy=0 (20)

which governs incompressible, potential �ow. It is a typical elliptic equation, describing an
isotropic di�usion in the (x; y) space.
For boundary conditions

f(x; 0)= sin(�x); f(x; 1)= sin(�x) exp(−�); f(0; y)=f(1; y)=0 (21)

Equation (18) has the exact solution

f(x; y)= sin(�x)exp(−�y) (22)

The in�uence of the number of points on the computation time is checked for both structured
(the point coincides with the node of a rectangular mesh, see Figures 5(a) and 5(b)) and
unstructured points distribution (see Figures 5(c) and 5(d)). Figure 3 illustrates the number
of iterations required to satisfy the convergence criterion for di�erent number of points. The
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Figure 4. Relative error when the iteration satis�es the convergence
criterion for di�erent number of points.

iteration is terminated when values of the dependent variable at each point satisfy the following
convergence criterion:

|fn
j − fn−1

j |610−7 (23)

where fj stands for any dependent variable, and n is the iteration level. As might be expected,
the computer time grows with the number of points. This can be seen from Figure 3 that the
number of iterations required attaining a given accuracy with SOR increases with the increase
of the number of points. In the case of structured points distribution, for a given number of
points, the number of iterations required to satisfy the convergence criterion decreases with
the increase of � (where � is the ratio of the distances from the centre point to the farthest
and nearest points in the 6-point scheme). This is because that the density of points near
the boundary increases with the increase of � in the present computation. Furthermore, it is
found that the number required to satisfy the convergence criterion is more in the case of
unstructured points distribution than in the case of structured points distribution at the same
number of points. Usually, a large number of points are required for a complex practical �ow
problem, but, fortunately, the parallel numerical algorithms have provided an e�ective and yet
very natural way of accelerating the computation for the point iteration processing method.
Figure 4 shows the relative error against the number of points when the iteration satis�es the
convergence criterion. The errors are calculated according to following formula:

Error=maximum
|fN

j − fexactj |
|fexactj | × 100 (24)

where N is the number of iterations required to satisfy the convergence criterion (23) at each
point. It is found that the error decreases with the increase of the number of calculation points.
However, when the number of points goes beyond 2000 the error approaches an asymptotic
value. In the case of structured points distribution, for a given number of points, the error
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increases with the increase of �. When �¡1:1, the relative error is below 0.5%, when �¿1:1,
the error increases remarkably. It can be explained by the fact that the truncation error � is
proportional to the distance between the farthest point and the centre point in the 6-point
scheme. If the point distribution does not vary uniformly a loss of accuracy is unavoidable.
This is similar to the property of �nite di�erence approximation on non-uniform meshes.
However, if the � is limited below 1.1 in the 6-point scheme, a satisfactory accuracy can be
achieved in practical �ow simulation. Further discussion is included in the next section.

3. NUMERICAL SIMULATION AND COMPARISONS

3.1. Shear driven �ow in a square cavity

The two-dimensional viscous incompressible �ow in a square cavity whose top wall moves
with a uniform velocity in its own plane has served as a model problem for testing and
evaluating the present numerical scheme because of the complexity of �ows.
The �ow governing equations in stream function  and vorticity � formulation are

 xx +  yy = � (25)

Re �t + Re( y�x −  x�y) = �xx + �yy (26)

with boundary conditions

 (x; 0; t)= (x; 1; t)= (0; y; t)= (1; y; t)=0 (27)

The vorticity boundary condition is determined from Equation (25). On account of accuracy
consideration, parallel points distribution is used. Thus, a second formula is proposed that can
be written as

�=−6[ (�r; t) + uB�r] + �(�r; t)�r2

2�r2
(28)

where �r is the distance between the parallel points, uB is the tangential velocity along the
boundary.
An unsteady approach, in which the solution evolves into steady state, is employed in the

present work. Furthermore, the implicit scheme is used for the time derivative, and the time
step is chosen as 0.005. At each time level the iteration is terminated when values of the
dependent variables at each point satisfy the following convergence criterion:

| n
j −  n−1

j |610−7 (29)

and

|�nj − �n−1j |610−5 (30)

It must be pointed out that  and � shear the same coe�cient matrix A at a given point
in the domain. Thus, for the solution of Equation (4) a single matrix inversion is required,
diminishing the computational time.
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Figure 5 shows a comparison of the �ow �eld and streamline patterns for Re=400 and
di�erent number of points. These plots give a clear picture of the overall �ow pattern and
the e�ect of the number of points on the structure of the steady recirculating vortices in the
cavity. For structured point distribution, it should be noted that when the number of points
is 441 (�=1:3) the vortices of the left and right lower corners of the cavity, where the point
distribution is dense, can been seen. But the streamline value at the centre of the primary
vortex, where the points are thinly scattered, is lower than that of solutions by FDM [15].
When the number of points increases from 441 to 2601 (�=1:05), the calculated streamline
pattern and values in full �ow �eld agree better with those solutions obtained by FDM
[15]. Figures 5(c) and 5(d) show the results at di�erent number of points for unstructured
points distribution. The in�uence of the number of points on the results is similar to the
case of structured points distribution. Better resolution is obtained as the number of point
increases. When the point distribution increases to 13 689 the agreement between the results
obtained by two methods is quite good. However, it is found that the results by FPM almost
remain unchanged even if the number of points is increased further. As discussed earlier, the
computation time grows with the increase of the number of points. But for structured points
distribution, �¡1:1, when the points are greater than a certain number the error approaches
an asymptotic value. The present results show that if one is interested in only global property,
such as �ow pattern, a relatively coarse point distribution should be adopted. Hence, if the
resolution of local properties is also of interest, a �ner point distribution will be necessary.
The comparison of the values of streamline and vorticity contours with the numerical results

of Ghia et al. [15] for Re=400 is shown in Figure 6. It can be seen that generally the
qualitative agreement between the results obtained by the two methods is good. In addition to
the primary, the centre vortex, a pair of counter-rotating vortices with much smaller strength
develops in the lower corners of the cavity. It is found that the primary vortex centre is at
x=0:555 and y=0:608 when Re=400. The location of the vortex centre predicted by FPM is
in close agreement with x=0:5547 and y=0:6055, reported by Ghia et al. [15] and x=0:5608
and y=0:6078 obtained by Chen et al. [16] at the same Reynolds number.
Figure 7 shows the velocity pro�les through the geometric centre of cavity for structured

points distribution. It is found that the use of 441 points is not adequate to accurately predict
the �ow. The use of 2601 points, however, yields results that are in good agreement with the
results reported in Reference [15] at the same Reynolds number. This �gure clearly indicates
that as the number of points increases, the accuracy increases.

3.2. Flow past a circular cylinder

In order to further illustrate the usefulness and accuracy of the present method, �ow around
an impulsively started circular cylinder was computed for irregular point distribution. The
number of points are 20 100 and �=1:05, as shown in Figure 8. Here Equations (25) and
(26) were solved together with the boundary conditions: no slip condition on the surface of
the cylinder; potential �ow at in�nity. These conditions can be written in stream function and
vorticity formulation as

 =0; �= − 6 (�r; t) + �(�r; t)�r2

2�r2
on �1 (31)
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Figure 5. Comparison of velocity �eld and streamline for Re=400 and di�erent number of points:
(a) and (b) structured points, (c) and (d) unstructured points.
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Figure 5. Continued.
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Figure 6. Comparison of the values of streamline and vorticity contours obtained by FPM (upper,
13 689 unstructured points) and by FDM (lower, 129× 129 nodes) [15] at Re=400. The values of  
are d—−0:0001, e—−0:0100, f—−0:0030, g—−0:05, h—−0:07, i—−0:09, j—−0:100, k—−0:110,

the value of � are 0—0.0, ±1—±0:5, ±2—±1:0, ±3—±1:0, ±4—±3:0, ±5—±4, ±6—±5:0.

 = y
(
1− 1

x2 + y2

)
; �=0 on �2 (32)

where �1 and �2 are the surfaces of the cylinder and the outer boundary far from the cylinder,
respectively. The initial vorticity can be approximated from Rayleigh’s solution [17].
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Figure 7. Velocity pro�les through the geometric centre of cavity at di�erent structured
points. Symbols are data from Reference [15].

The initial development of impulsively started �ow around a cylinder for Re=3000 has
been studied numerically and experimentally by some researchers. The present results are
compared with the experimental visualization results obtained by Bouard and Coutancea [18],
as shown in Figure 9. Both show the elongation with time of the main vortex and the
appearance of a secondary vortex of opposite vorticity near the separation point at time t=3.
The secondary vortex grows in size until it touches the boundary of the main recirculation
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Figure 8. Points distribution for �ow past a circular cylinder.

Figure 9. Comparison of experimental �ow visualization [17] (upper) with streamlines (lower) by FPM
for Re=3000 at times (a) t=3 and (b) t=5.
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(b) Evolution with time of vorticity distribution on the surface of the cylinder  
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Figure 10. Comparison of velocity pro�les and vorticity distribution on the surface of the cylinder from
experimental (symbols), present (solid line) and the �nite di�erence (symbols) results at Re=3000.

Symbols are data from References [17; 18].

zone and splits the main vortex into two parts. Two secondary vortices of opposite vorticity
emerge in the part near the separation location and constitute the so-called �-phenomenon at
t=5 (see Figure 9(b)).
Figure 10 shows a comparison of the present with experimental and numerical results for

the velocity pro�les and surface vorticity. The evolution with time of vertical velocity on the
symmetric axis behind the cylinder is compared with the experimental results of Bouard and
Coutanceau [18] at the same Reynolds number. The present results as shown in Figure 10(a)
is in good agreement with the experimental results. A comparison of the time evolution
of vorticity distribution over the surface of the cylinder with the numerical results of Ta
and Bouard [19] is shown in Figure 10(b). It is found that the present results are also in
good agreement with their results during the early stage of the �ow. Furthermore, whenever
comparison is possible, it is found that the results of the present computations on �ow past
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a cylinder are found to be in good agreement with the experimental and numerical results
obtained by other investigators.

4. CONCLUDING REMARKS

The numerical results show that the present method is capable of satisfactorily predicting the
�ow characteristics in the vicinity of the body surface, such as �ow separation. The main
characteristics of the present method are summarized as follows:
The algorithm is simple, and it is parallel in nature due to the locality of point information,

so it is well suited to massively parallel computing. The extension of the present method to
three-dimensional problems is straightforward.
It is e�ective to handle the non-linear convection terms by means of the upwind-dominated

6-point scheme, and �exible to handles complex boundary conditions and complex properties
of �uid system.
If one is interested in only global property, such as �ow pattern, a relatively coarse point

distribution should be adopted. If the resolution of local properties is also of interest, a �ner
point distribution will be necessary. The computation time grows with the increase of the
number of points. But for structured point distribution, �¡1:1, when the points are greater
than a certain number the error approaches an asymptotic value.
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